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Abstract

The aim of this work is to perform numerical simulations of the propagation of a laser in a plasma. At each time step,
one has to solve a Helmholtz equation in a domain which consists in some hundreds of millions of cells. To solve this huge
linear system, we use an iterative Krylov method preconditioned by a separable matrix. The corresponding linear system is
solved with a block cyclic reduction method. Some enlightenments on the parallel implementation are also given. Lastly,
numerical results are presented including some features concerning the scalability of the numerical method on a parallel
architecture.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical simulation of propagation of high power intensity lasers in a plasma is important for the
‘‘NIF project” in USA and the ‘‘LMJ Facility project” in France. It is a very challenging area for scien-
tific computing. Indeed the laser wave length 2p=k0 is equal to a fraction of one micron and the simula-
tion domain has to be much larger than 500 lm. In a plasma the index of refraction is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� NðxÞ
p

, where NðxÞ ¼ N eðxÞ=Nc and N e is the electron plasma density at position x and the critical
density N c is a constant depending only on the wave length. Of course, the laser propagates only in
the region where NðxÞ 6 1. In macroscopic simulations (where the simulation lengths are of the order
of some millimeters), geometrical optics models are used and numerical solutions are based on ray tracing
methods. To take into account more specific phenomena such as diffraction, autofocusing and filamenta-
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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tion, models based on a paraxial approximation of the full Maxwell equations are used. This kind of
approximation is based on the assumption that the density NðxÞ is close to a mean value N av; it allows
to make an expansion of W.K.B. type with a constant wave vector. At the end of Section 2, we recall the
paraxial Eq. (7); see for example [5,1] in a classical framework and [6] for an analysis of this equation in a
tilted frame and a numerical method. But, there are situations where the macroscopic variations of the
plasma density N e are not small, particularly in the zones which are just before the critical density. In this
zone, the laser beam undergoes a strong change of direction near a surface called caustic surface. That is
to say the wave vector is strongly varying near this surface, the paraxial approximation is no more valid
and one has to deal with a model based on a frequency wave equation (obtained as a time envelope of the
solution of the full Maxwell equations). The model is described in the Section 2. For a derivation of the
models and a physical exposition of the phenomena under interest, see e.g. [23] or [12].

This paper is aiming at describing the numerical methods for solving the frequency wave equation and the
coupling with the model for the plasma behavior. At each time step, one has to find the solution w ¼ wðxÞ of
the following Helmholtz problem
k�2
0 Dwþ ðð1� NÞ þ ilÞw ¼ f ð1Þ
where f is a given complex function and l a positive function related to the absorption of the laser by the plas-
ma. Let us notice that l is usually very small and in some computation, we take l ¼ 0.

In this paper, only 2D problems are considered but the method may be extended to 3D simulations, see
Section 4.4. Let us set x ¼ ðx; yÞ the two spatial coordinates. The key assumption is that the gradient of the
density Nðx; yÞ is mainly parallel to the x-axis, then we set
Nðx; yÞ ¼ N 0ðxÞ þ dNðx; yÞ ð2Þ

where N 0 depends on the x variable only and dN is small compared to 1. This allows to deal with real physical
situations as it is shown in the numerical applications below.

The simulation domain is a rectangular box and a classical finite difference method is used for the spa-
tial discretization. For an accurate solution it is necessary to have a spatial step equal to a fraction of the
wave length. If nx and ny denote the number of discretization points in each direction, it leads to solve a
linear system with nxny degrees of freedom (which may be of the order of 108 for a typical 2D spatial
domain).

One chooses an iterative method of Krylov type (cf. [9,22]) with a preconditioning by a matrix correspond-
ing to the discretization of (1) with N replaced by N 0. This leads to solve a linear system corresponding to a
separable tridiagonal block matrix (each block is a nx � nx matrix), then a block cyclic reduction method may
be used; see for instance [17,20] for this kind of method. The crucial point for this method is to decompose the
unknown onto the basis of the nx eigenvectors of the main-diagonal block matrix.

The paper is organized as follows. After the statement of the model in Section 2, we present the main dif-
ficulties for the numerical simulation of such problems in Section 3. In Section 4, the numerical scheme for the
Helmholtz solver is presented, especially the method for solving the preconditioner with the block cyclic reduc-
tion method; some enlightenments on the parallel implementation and on the coupling with the hydrodynam-
ics part are also given. Lastly, numerical results are presented including some features concerning the
scalability of the numerical method.

2. Statement of the model

Our goal is to perform simulations taking into account diffraction, refraction and autofocusing phenomena.
So it is necessary to perform a coupling between the fluid dynamics system for the plasma behavior and the
frequency wave equation for the laser propagation (notice that the Brillouin parametric instabilities which cre-
ate laser backscattering are not taken into account).

The laser beam is characterized by an electromagnetic wave with a fixed pulsation, so it may be modeled by
the time envelope W ¼ Wðt; xÞ of this electric field. It is a slowly time varying complex function. On the other
hand, for modeling the plasma behavior we introduce the non-dimensional electron density N ¼ Nðt; xÞ and
the plasma velocity U ¼ Uðt; xÞ.
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2.1. Modeling of the plasma

For the plasma, the simplest model is the following fluid model. Let us denote P ¼ PðN ; T eÞ a smooth func-
tion of the density N and of the electron temperature T e (T e is a very smooth given function of the spatial
variable x). Then one has to solve the following barotropic Euler system:
o

ot
N þrðNUÞ ¼ 0; ð3Þ

o

ot
ðNUÞ þ rðNUUÞ þ rðP ðN ; T eÞÞ ¼ �NcprjWj

2
: ð4Þ
The term cprjwj
2 corresponds to a ponderomotive force due to a laser pressure (the coefficient cp is a constant

depending only on the ion species).

2.2. Modeling of the laser beam

Let us denote � ¼ k�1
0 . The laser field W ¼ Wðt; xÞ is a solution to the following frequency wave equation

(which is of Schrödinger type)
2i
1

c
o

ot
Wþ �DWþ 1

�
ð1� NÞWþ imW ¼ 0; ð5Þ
where the absorption coefficient m is a real coefficient related to the absorption of the laser intensity by the
plasma and c the light speed.

2.3. Boundary conditions

The laser beam is assumed to enter into the domain at x ¼ 0. Denote by eb the unit vector in the direction of
the incoming beam. Since the density N depends mainly on the x-variable, we may denote by N in the mean
value of the incoming density on the boundary and by Nout the mean value of the density on the outgoing
boundary. The boundary condition at x ¼ 0 reads (with n the outwards normal to the boundary)
ð�n � r þ iK � nÞðW� ain eik0KxÞ ¼ 0: ð6Þ

where K ¼ eb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N in
p

, ain ¼ ainðyÞ is a smooth function which is, roughly speaking, independent of the time.
On the part of the boundary x ¼ xmax, there are two cases according to the value Nout:

(i) If Nout > 1, the wave does not propagate up to the boundary and the boundary condition may read as
oW=ox ¼ 0.

(ii) If N out
6 1, one has to consider an absorbing boundary condition. Here we take the simplest one, that is

to say ð�n � r þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nout
p

ÞW ¼ 0.

In addition, on the part of the boundary corresponding to y ¼ 0 and y ¼ ymax, it is crucial to have a good
transparent boundary condition, so we introduce perfectly matched layers (PML), see [3]. For the simple equa-
tion �Dw� x2w ¼ f , this technique amounts to replace in the neighborhood of the boundary, the operator o

oy
by ð1þ r

ix Þ
�1 o

oy, where r is a damping function which is not zero only on two or three wave lengths and which
increases very fast up to the boundary. Notice that the feature of this method is that it is necessary to modify
the discretization of the Laplace operator on a small zone near the boundaries.

Remark 1 (On the system (3)–(5)). Even if the non-linearities are withdrawn in the barotropic Euler equations,
it is difficult to prove the well-posedness of the considered system which is of the Zakharov type (to check this
point, it is enough to check that w ¼ 1� N satisfies a wave equation with a right hand side term containing
DðjWj2Þ). Another mathematical difficulty comes from the incoming boundary condition (6). Nevertheless, if
the laser intensity jWj2 is not very large, it is generally assumed that there exists a solution of this system. See
[8,15] for some mathematical considerations on the Zakharov system.
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Remark 2 (The paraxial equation). For the sake of completeness, we recall now the paraxial approximation
equation which is valid only if the plasma density is a very smooth function, in such a way that we can take
N 0 ¼ N av where N av is a constant. So we can define a mean wave vector K ¼ eb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N av

p
and the laser beam is

now characterized by the space and time envelope of the electric field E ¼ Eðt; xÞ, that is to say

iK�x=�
Wðt; xÞ ¼ Eðt;xÞe :
The envelope E is assumed to be slowly varying with the space variable and thus satisfies
i
2

c
oE
ot
þ 2K � rE þ mE

� �
þ �ðDK

?EÞ � 1

�
ðN � N avÞE ¼ 0: ð7Þ
where DK
? denotes the Laplace operator in the hyperplane transverse to K. It is necessary to supplement Eq. (7)

with a boundary condition on the incoming boundary which is Eð0; �Þ ¼ ain with an initial condition, see
[5,1,6].

3. Difficulties

The discretization and the solving of the above system of partial differential equations is very challenging
since different space scales are to be considered. Moreover, it leads to very large linear systems.

3.1. Multiscale in space

For solving (5), the spatial mesh has to be very fine, hHelmholtz ’ k0=10 or less in each direction (recall that
k0 ¼ 2p=k0); this mesh is called in the sequel the Helmholtz grid. But the modulus jwj of the electric field is
slowly varying with respect to the spatial variable, thus one can use a coarse mesh for the simulation of
the Euler system, typically one can set hfluid ’ k0=2.

For the numerical solution of the fluid system, we refer to the method described in [14] or [1] which has been
implemented in a parallel platform called HERA. The ponderomotive force is taken into account by adding a
force proportional to rjwj2 to the pressure force. The plasma density N, the velocity U and the laser intensity
jwj2 are evaluated at the center of each cell.

So we handle a two-level mesh of finite difference type: in a 2D simulation, each cell of the fluid system is
divided into p0 � p0 cells for the Helmholtz level, with p0 ¼ 5 or more. At each time step dt determined by the
CFL criterion for the Euler system, one has to solve the frequency wave Eq. (5). For the time discretization of
this equation, an implicit scheme is used. The length cdt is very large compared to the spatial step therefore the
time derivative term may be considered as a perturbation. So, at each time step, if wini denotes the value of the
solution of the previous time step, one has to find w solution of the following equation of Helmholtz type
�2Dwþ ðð1� NÞ þ il1Þw ¼ il0w
ini; ð8Þ
where l0 ¼ �2=ðcdtÞ, l1 ¼ �ð2=ðcdtÞ þ mÞ. This equation is supplemented by a boundary condition at x ¼ 0
�
o

ox
þ iKx

� �
w ¼ �

o

ox
þ iKx

� �
ðaineiKy �y=�Þ: ð9Þ
and another one in x ¼ xmax as above.

3.2. Large scale problem

As we shall see, the main difficulty comes from the Helmholtz equation: the number of unknowns is quite
large and the properties of the resulting linear system make it hard to solve. The linear system is symmetric but
not Hermitian; these properties are inherited by the discretized equations. The resulting linear systems are thus
difficult to precondition. Concerning the preconditioning, the assumption (2) leads to replace the original
system by another one which is simpler since it does not take into account the perturbation dNðx; yÞ. The cor-
responding linear system to be solved leads to a five-diagonal symmetric non-hermitian matrix AG
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AG ¼

bþ A �T

�T A �T

. .
. . .

. . .
.

�T A �T

�T bþ A

0
BBBBBB@

1
CCCCCCA

ð10Þ
where T is equal to a constant times the identity matrix of dimension nx, the matrix A of dimension nx and b is
a complex constant. The matrix AG is separable and therefore a block cyclic reduction method may be used for
its numerical solution.

Note that a realistic simulation with a domain of size 500 lm � 700 lm and with a wave length of 0.35 lm,
results in 12 millions fluid unknowns and 300 millions unknowns on the Helmholtz grid.
4. Numerical strategies

4.1. Helmholtz solver

Even though we consider a 2D problem, the very large size of the problem prevents us from using a
direct solver, even a parallel one. We have to use an iterative method, in our case a preconditioned Krylov
solver, see for instance [9,22]. As for the preconditioner, it seems difficult to propose one which would be
valid both in the central zone where a pure Helmholtz equation is considered and in the Perfectly Matched
Layers (PML). Therefore, we first perform a decomposition of the domain into three subdomains: two thin
PML layers and a large central domain with appropriate interface conditions, see Section 4.1.1. The precon-
ditioning of the central problem is presented in Section 4.1.2, it corresponds to the solution to an approx-
imate equation.

Let us mention right away that a multigrid method for the Helmholtz Eq. (11) would not work. Indeed,
multigrid methods are efficient only if a large enough damping parameter is present in the equation. Here,
the coefficient cdt is larger than 100 wave lengths and the term m is typically given by the formula:
m ¼ mCN 0ðxÞ2
with 1=mC in the order of 15 lm (typical values of the density are around 0.4). So the damping term
k0l1 ¼ k0ðl0 þ mÞ is quite small when compared to the wave length 2pk�1

0 and it is too weak for a multigrid
method.

To solve the linear system arising from the discretization of the Helmholtz equation
�2Dwþ il1wþ ð1� N 0ðxÞÞw� dN ðx; yÞw ¼ il0w
ini; ð11Þ
we use the fact that the function N 0 depends only of a one-dimension variable and we deal with a Krylov meth-
od with a preconditioner which corresponds to a separable matrix. This preconditioner may be interpreted as
the discretization of the operator
w 7!�2Dwþ il1wþ ð1� N 0ðxÞÞw: ð12Þ

(recall l1 ¼ l0 þ m) with the same boundary conditions. A block cyclic reduction method is then used for solv-
ing the corresponding linear system.

Let us mention that the idea of preconditioning a variable coefficient Helmholtz equation by a problem
amenable to the separation of variables technique was investigated in [19] in the context of seismic modeling.
Although in this context the method was not satisfactory, we shall see that in our context (laser–plasma inter-
action), results are indeed very good. We mention as well another method [7] based on the preconditioning of
(11) by a shifted Helmholtz equation with b0 ’ 0:3� 0:5
�2Dwþ il1wþ ð1þ ib0Þ½ð1� NÞw�
that would be amenable to a multigrid solver.
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Let us also mention that it is not possible to use a simple FFT in the y-direction. Indeed, that would amount
to assume periodicity in this direction. It is not the case since the laser goes out through a side of the domain
(say Xt) and not through the other.

4.1.1. Domain decomposition

The computational domain is divided into three overlapping subdomains: a purely Helmholtz zone Xc and
two zones bordering it above Xt and below Xb, see Fig. 1. In Xt and Xb, we have both a PML and a Helmholtz
region.

The coupling between the subdomains is made via Robin interface conditions, see [16,2]. So solving (8)
leads to the following coupled system of equations, where the unknown functions are wt;wc;wb
�2 gðyÞ o
oy gðyÞ o

oy

� �
þ o2

ox2

h i
wt þ il1wt þ ð1� N 0Þwt ¼ 0 in Xt

owt
oy þ iawt ¼

owc
oy þ iawc on C2

h

8<
:
�2Dwc þ il1wc þ ð1� N 0Þwc � dNwc ¼ il0w

ini in Xc

owc
oy þ iawc ¼ owt

oy þ iawt on C1
t

� owc
oy þ iawc ¼ �

owb
oy þ iawb on C1

b

8>><
>>:
�2 gðyÞ o

oy gðyÞ o
oy

� �
þ o2

ox2

h i
wb þ il1wb þ ð1� N 0Þwb ¼ 0 in Xb

� owb
oy þ iawb ¼ �

owc
oy þ iawc on C2

b

8<
: :
The coupling interface condition are of Robin type with a ¼ 0:5=�. The boundary condition at x ¼ 0 is given
by (9) for wc and by ð� o

oxþ iKxÞw ¼ 0, for wt and wb. These equations are discretized by a finite difference
scheme. Let us denote by Wt, Wc and Wb the corresponding unknown vector in domains Xt, Xc and Xb.
The linear system to be solved reads:
M

Wt

Wc

Wb

0
B@

1
CA ¼

bt

bc

bb

0
B@

1
CA where M ¼

AP1 C1 0

C2 AH C3

0 C4 AP2

2
64

3
75: ð13Þ
The blocks ðCiÞ16i64 are related to the discrete Robin interface conditions.
Γ

Γ

Γ

Γ1

b

Ωc

Ωb

2

2

1

t

b

PML

PML

HELMHOLTZ

Ω t

Fig. 1. Domain decomposition into three overlapping subdomains.
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4.1.2. The matrix system

Denote by AdN the diagonal matrix corresponding to the discretization of the operator of multiplication by
�dN þ iðl1 � l0Þ and by AG the one corresponding to the discretization of Eq. (12), that is to say
AH ¼ AG þ AdN , then the matrix M may be decomposed as
M ¼ MD þME;
with
MD ¼
AP1 0 0

0 AG 0

0 0 AP2

2
64

3
75 and ME ¼

0 C1 0

C2 AdN C3

0 C4 0

2
64

3
75
The principle for solving the linear system (13) is to use a Krylov method preconditioned by MD which is a
block diagonal matrix; here we choose a GMRES algorithm (without restart since the number of iterations
is quite low, see below Section 5.2). To apply the preconditioner, since matrices AP1;AP2 are small ones, they
can be factorized by a direct method and from the computational point of view, the key step is to use a fast
solver for the matrix AG.

Let us describe the structure of the matrix AG coming from the discretization of Eq. (12). Denote by dy the
mesh size in y, by I the identity matrix of dimension nx. Let A0 be the symmetric tridiagonal matrix which cor-
responds to the discretization of the following 1D problem
�2 o2

ox2
wþ ð1� N 0ðxÞÞw;
with the boundary condition (9). Their coefficients are real except the one in the first row and the first column
(due to the boundary condition). Then we set
A ¼ A0 þ il0I� 2�2

dy2
I

T ¼ � �2

dy2
I;

B ¼ A0 þ i l0 �
a�2

dy

� �
I� �2

dy2
I ¼ Aþ bI
where b ¼ �ia�2=dy þ �2=dy2. Now, if we denote Wc ¼ ðu1; u2; . . . ; uny Þ and f ¼ ðf1; f2; . . . ; fny Þ where the ele-
ments um and fm are nx�vectors, the system AGWc ¼ f reads as follows:
B �T

�T A �T

. .
. . .

. . .
.

�T A �T

�T B

0
BBBBBB@

1
CCCCCCA

u1

u2

..

.

uny�1

uny

0
BBBBBBB@

1
CCCCCCCA
¼

f1

f2

..

.

fny�1

fny

0
BBBBBBB@

1
CCCCCCCA

ð14Þ
4.1.3. Cyclic reduction

In order to solve system (14), we use the block cyclic reduction method, see for instance [10]. Let us recall
the principle of this method. Assuming that ny ¼ 2k � 1 for the sake of simplicity. We know that A and T com-
mute. Consider three successive lines of (14) for i ¼ 2; 4; . . . ; ny � 1:
�Tui�2 þ Aui�1 � Tui ¼ fi�1

�Tui�1 þ Aui � Tuiþ1 ¼ fi

8><
>: ð15Þ

�Tui þ Auiþ1 � Tuiþ2 ¼ fiþ1:
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After a linear combination of these lines, we get:
�T 2A�1ui�2 þ ðA� 2T 2A�1Þui � T 2A�1uiþ2 ¼ fi þ TA�1ðfi�1 þ fiþ1Þ ð16Þ

After this first step, the elimination procedure may be performed again by induction. That is to say, denote
Að0Þ ¼ A, Bð0Þ ¼ B, T ð0Þ ¼ T et f ð0Þ ¼ f ; after r elimination steps, the reduced system for 0 6 r 6 k � 1 owns
2k�r � 1 blocs and reads as:
BðrÞ �T ðrÞ

�T ðrÞ AðrÞ �T ðrÞ

. .
. . .

. . .
.

�T ðrÞ AðrÞ �T ðrÞ

�T ðrÞ BðrÞ

0
BBBBBBB@

1
CCCCCCCA

u2r

u2:2r

..

.

uðny�1Þ�2rþ1

uny�2rþ1

0
BBBBBBB@

1
CCCCCCCA
¼

f ðrÞ2r

f ðrÞ2:2r

..

.

f ðrÞðny�1Þ�2rþ1

f ðrÞny�2rþ1

0
BBBBBBBBB@

1
CCCCCCCCCA
where for r ¼ 1; . . . ; k � 2:
AðrÞ ¼ Aðr�1Þ � 2ðT ðr�1ÞÞ2ðAðr�1ÞÞ�1

BðrÞ ¼ Aðr�1Þ � ðT ðr�1ÞÞ2ððAðr�1ÞÞ�1 þ ðBðr�1ÞÞ�1Þ

T ðrÞ ¼ ðT ðr�1Þ2ÞðAðr�1Þ�1

Þ

ð17Þ
For the right hand side, we get the induction formula:
f ðrÞi:2r ¼ f ðr�1Þ
i:2r þ T ðr�1ÞðAðr�1ÞÞ�1ðf ðr�1Þ

i:2r�2r�1 þ f ðr�1Þ
i:2rþ2r�1Þ ð18Þ
After all the elimination steps, it remains only one equation for finding u2k�1 . Once this value is obtained, one
deduces all the other values step by step recursively.

From a practical point of view, one has to perform these computations in the spectral basis of the eigen-
vectors of the matrix A, which are of course also eigenvectors of T, B, AðrÞ, T ðrÞ, BðrÞ for all r.
4.2. Parallel implementation

The implementation of the method has been made in the HERA platform, see [1,14]. For the Helmholtz
solver, one first has to find a orthonormal basis of eigenvectors of A0. As a matter of fact, the matrix A0 is
symmetric non-hermitian, all their coefficients are real but the one at the top corner which is complex due to
the boundary condition. Since the matrix A0 is symmetric complex but not hermitian, we search a set of
eigenvectors which are orthogonal for the pseudo inner product hu; vi ¼ uT � v. To compute this set, we
use the ‘‘new QD” algorithm of Parlett (cf. [18]) although it was designed for real matrix. We conjecture
that it is always possible to find such a basis of eigenvectors for our class of matrices, where one diagonal
coefficient is complex. The only difficulty would be to find a non zero eigenvector v such that vT � v ¼ 0. Let
us mention that this problem is addressed in [11] and that it is equivalent to suppose that matrix A0 is diag-
onalizable. In practice, we never encountered any problem by using the method. In the method proposed in
[18], which follows an idea of [21], the computation of the eigenvalues is based on a series of LU factoriza-
tion of tridiagonal matrices. This step is sequential but very cheap in terms of memory and CPU time
requirements especially when compared to the QR algorithm which would manipulate full matrices. Once
the eigenvalues have been computed, the computation of the eigenvectors consists in finding the kernel
of tridiagonal matrices. One uses the algorithm proposed by Dhillon [4] based on the ‘‘new QD” algorithm
which produces directly an orthogonal basis of eigenvectors. This task is distributed among the processors
and is thus parallel. The great contribution of [18,4] is to explain how to perform the above mentioned tasks
in a stable and robust way. In the real case, the stability analysis was performed in [18]. Here, we use the
‘‘new QD” algorithm in the symmetric complex framework. In our tests, this method is very stable, accurate
and 40 times faster than the QR method.
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Let Q denote the matrix whose columns are the eigenvectors of A0. The matrix Q is orthonormal for the
pseudo scalar product, that is to say
QQT ¼ QTQ ¼ I
Since T is the identity matrix up to a multiplicative constant, one can introduce the diagonal matrices Kð0Þ and Cð0Þ
A ¼ QKð0ÞQT; T ¼ QCð0ÞQT: ð19Þ

So we get
AðrÞ ¼ QKðrÞQT; T ðrÞ ¼ QCðrÞQT ð20Þ

with the following induction formulas
KðrÞ ¼ Kðr�1Þ � 2ðCðr�1ÞÞ2ðKðr�1ÞÞ�1
; CðrÞ ¼ ðCðr�1ÞÞ2ðKðr�1ÞÞ�1 ð21Þ
Let us summarize the algorithm

� Introduce the vectors ~f i transformed of fi in the eigenvector basis
~f i ¼ QTfi for i ¼ 1; . . . ; ny :
� At each step r, the vector ~f r
i transformed of f r

i of the right hand side, reads
~f ðrÞi:2r ¼ ~f ðr�1Þ
i:2r þ Cðr�1ÞðKðr�1ÞÞ�1 ~f ðr�1Þ

i:2r�2r�1 þ ~f ðr�1Þ
i:2rþ2r�1

� �
� One computes the vectors ~u2k�1 by solving
Kðk�1Þ~u2k�1 ¼ ~f ðk�1Þ
2k�1
� One recursively distributes the solutions by solving sub-systems of the following type
KðrÞ~uj:2rþ1�2r ¼ ~gðrÞ
j:2rþ1�2r
where
~gðrÞ
j:2rþ1�2r ¼ ~f ðrÞ

j:2rþ1�2r þ CðrÞð~uðj�1Þ:2rþ1 þ ~uðjÞ:2rþ1Þ
� Lastly, the solution u is given by
ui ¼ Q~ui for i ¼ 1; . . . ; ny :
For the parallel implementation, the processors are shared out according to horizontal slabs in a balanced
way. Let us note that the first and last processors contain PML layers and some lines of the central grid. The
crucial point of the algorithm is the multiplication of a full matrix Q (and its transpose) of dimension nx � nx

by the set of ny vectors, i.e. a matrix–matrix multiplication. Within a realistic framework for Symmetric Mul-
tiProcessors (SMP) architecture, the matrix Q of a size of several giga octets can be stored only in the memory
of the nodes of processors. This led us to use a technique of hybrid parallelization of MPI-multithreading type.
One wishes to profit from the locality of the data between processors of the same node and to use MPI for the
others communications between nodes. Cutting is carried out in order to avoid conflict of writing of the
threads. For example, shearing in Nq � Nb threads leads to
Q1

..

.

QNq

2
664

3
775� B1 . . . BNb½ � ¼

Q1B1 . . . Q1BNb

..

. . .
. ..

.

QNq
B1 . . . QNq

BNb

2
664

3
775:
Each product QiBj is carried out by a call to the BLAS library. Let us specify that the steps of computation in
the spectral basis (i.e. KðrÞ, CðrÞ, ~f ðrÞi:2r . . ..) are of a very negligible cost in comparison to matrix–matrix products.
Our tests show a good scalability of the cyclic reduction and a great speed of execution.
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4.3. Coupling with the hydrodynamics part

Notice first that, since the absorption coefficient is very small, the modulus of the solution of the Helm-
holtz equation is slowly varying with the space variable and therefore also the laser intensity jwj2. Therefore,
one can deal with the ponderomotive force rjwj2 and the hydrodynamics equations on the coarse grid
(whose size is equal to one half of the wave length). The general numerical scheme is the following at each
time step.

First step : Solve the Helmholtz Eq. (11) on the fine grid according to the above described method.
Second step : Evaluation the laser intensity jwj2 on this coarse grid: one simply takes the mean value of the

quantities jwj2 defined on the fine grid.
Third step : Solving the hydrodynamics system (3) and (4) on the coarse grid. One uses a standard explicit

scheme for dealing with the classical part of this system. For the ponderomotive force, we use a
centered discretization of the gradient of the laser intensity. Let us sketch in 1D the resulting
scheme; the extension in 2D is straightforward. For a cell j whose adjacent cells in the direction
x are denoted by jþ 1 and j� 1, we denote by N j, pj, and uj the density, the pressure and the
velocity in the cell j evaluated at the beginning of the time step (without superscript) and at
the end of of the time step (with the superscript �dt). If one uses a numerical solver à la Roe,
the resulting values at the end of the time step take the following form
N dt
j ¼ Nj �

dt
dx
ðfjþ1=2 � fj�1=2Þ; ð22Þ

ðNuÞdt
j ¼ ðNuÞj �

dt
dx
ðgjþ1=2 � gj�1=2Þ; ð23Þ
where the numerical fluxes f� and g� on cell edge j� 1=2 depend only on the quantities N j, pj, and uj on the
two neighbor cells (for first order schemes) or on the four neighbor cells (for second order schemes); see for
instance [1] or [14] for details. Moreover, for taking into account the ponderomotive force cprjwj

2, we use a
standard centered discretization: one has to add to the right hand side of (23) the following term evaluated
with the last known values of w
dtN jcp

jwjþ1j
2 � jwj�1j

2

2dx
Fourth step : We have to perform a linear interpolation between the coarse grid and the fine grid for getting a
suitable electron density N 0 and dN on the fine grid for solving the Helmholtz equation at the
future time step.

Of course in the PML zones, the ponderomotive force terms have not to be taken into account.

4.4. Remarks about 3D computations

For 3D computations, one may assume that the third direction z is orthogonal to the propagation plane,
therefore the laser beam does not go out of the domain through the z-boundary. So one could use a periodic
structure in the z-direction with a large artificial absorption coefficient near the z-boundary. Then, one can
apply the same block cyclic reduction method with A a square matrix whose dimensions are equal to
nx � nz. That corresponds to the discrete 2D operator following:
�2 o2

ox2
þ o2

oz2

� �
þ ð1� N 0Þ þ l1:
So, the eigenfunctions read as wjðxÞeikz2p=Lz where Lz is the size of the domain. From the discrete point of view,
the matrix A (see (14)) is penta-diagonal and has the form
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M �I �I

�I M �I

. .
. . .

. . .
.

�I M �I

�I �I M

0
BBBBBB@

1
CCCCCCA
One can check that if the eigenvalues of M are ðkjÞ16j6nx
, the eigenvalues of A may read as

ðkj � bk2Þ16j6nx;06k6nz�1 with b positive. The eigenvectors may be factorized as in the continuous case.
But the key problem is the data storage. Indeed, for a realistic case with a domain of about 1011 cells, the

main unknown would be a complex vector of size about 1011. Thus, by extrapolating our simulation needs in
2D, it leads to about more than one thousand nodes with at least 16 processors per node. This will be a real
high performance computing challenge for the future supercomputer architectures.

5. Numerical results

5.1. Test cases

The boundary value ain has to mimic laser beam; to be realistic the profile of ain corresponds to a juxtapo-
sition of a lot of small hot spots, called speckles whose intensity is very high compared to the mean intensity of
the beam. The shape of a speckle is generally a Gaussian function whose width is about a few micrometers.

One considers here a simulation domain of 100� 300 wave lengths; the initial density profile is a linear
function increasing from 0.1 at x ¼ 0 to 1:1 at x ¼ xmax. The profile of ain contains only three speckles At
the Helmholtz level, one handles only 3 millions of cells. With 32 PEs (of the type EV67 HP-Compaq), the
CPU time is only a few minutes per time step with approximatively 10 Krylov iterations at each time step.
Fig. 2. Laser intensity of a schematic beamlet.



S. Desroziers et al. / Journal of Computational Physics 227 (2008) 2610–2625 2621
Without the coupling with the plasma, it is well known that the solution is very close to the one given by
Geometrical Optics approximation and corresponds to parallel speckles or beamlets which are curved and tan-
gent to a caustic line; this line corresponds to x ¼ xH such that N 0ðxHÞ ¼ cos2ðhÞ, with h denoting the incidence
angle of the beamlets where they enter into the simulation box (see for example [13] for this approximation
and for examples of beamlet travel in a plasma with a linear density profile). With our model, if the laser inten-
sity is small (which corresponds to a weak coupling with the plasma), one notices that a small digging of the
plasma density occurs. This digging is more significant when the laser intensity is larger, then an autofocusing
phenomenon takes place. On Fig. 2, one sees the map of the laser intensity that is to say the quantity jwj2,
which corresponds to this situation after some time steps. We see here that the three beamlets behave as in
Geometrical Optics approximation in the first part of their path; but since they undergo autofocusing, some-
thing like a filamentation may be observed in the region where the beamlets are curved.
Fig. 3. Laser intensity of a beamlet in a plasma after 6 ps without absorption. Notice the autofocusing of the beamlet near the caustic. The
x axis is here vertical.
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Fig. 4. Number of GMRES iterations versus time.



Table 1
Scalability for a fixed size problem

Number of processes 16 32 64 128
Elapsed time per GMRES iteration (s) 492 249 126 64
Efficiency GMRES algorithm 1 0.987 0.976 0.96

Table 2
Scalability for problems of increasing sizes

Number of Processes 1 4 16 64 256
No. of d.o.f. �106 0.4 1.6 6.3 25.4 101.6
Elapsed time for QD algorithm (s) 1 3 12 48 189
Elapsed time per GMRES iteration 4.8 11.6 24 47 93
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Another case will be presented, corresponding to simulation domain of 700� 1200 wave lengths. At the
Helmholtz level, one handles 84 millions of cells and the simulation have run on 128 PEs. The map of the laser
intensity is shown on Fig. 3 after 6 ps (corresponding to about 15 time steps). We have set to zero the absorp-
tion coefficient in order to have a sharp problem. The caustic lines corresponds to about N 0ðxHÞ ¼ 0:5. Here
the digging of the plasma is locally very important since the variation of density dN reaches 0.07 in a region
where N 0ðxÞ ¼ 0:45.

5.2. Numerical performance

We focus on the solution of the very large system (13) arising from the discretization of the Helmholtz
equation by the preconditioned GMRES method presented above. At each time step, the computation is ini-
Fig. 5. Laser intensity for a multiple beams laser for a plasma density ranging up to 1.
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tialized using the solution of the previous time step. In Fig. 4, we plot the iteration counts as a function of the
physical time. As time increases, the density fluctuation dN gets larger and it is necessary to perform more iter-
ations of the GMRES method. Nevertheless, we do not have more than 20 iterations.

Let us address now the scalability of our computational method. So we consider a fixed size problem of 40
million unknowns and we increase the number of processors. Table 1 gives the elapsed time of one GMRES
iteration. Due to the good parallel properties of the cyclic reduction, we see that the speed up is almost perfect.
Now when the number of unknowns increases, one can easily check that the computational effort grows pro-
portionally to n2

xny . In Table 2, from one column to the next, the number of points is doubled in each direction
so the CPU time is 8 times larger. Since the number of processors is multiplied by four, we check that the
elapsed time is about two times larger. These two tables show that the parallelization of the cyclic reduction
method work very well.

5.3. A more realistic case

In the realistic configurations, it may be useful to solve the paraxial equations on a part of the simulation
domain in which this approximation is valid and the Helmholtz equations on the remainder where the validity
of this approximation is no more true. The mesh size for to numerical solution of the paraxial equation is the
same as for the fluid system (see [14,5]). The coupling between the paraxial and Helmholtz parts is performed
according to the classical boundary condition for the Helmholtz Eq. (9) with ain replaced by Eout, which is the
value of the solution to the paraxial equation at the interface boundary. The advantage of the paraxial equa-
tion is that it can be solved by a marching method in space where only 1D systems have to be solved at each
vertical line of unknowns; see [5,6].

Here we have performed a simulation with an initial density which is equal to 0.15 up the third of the sim-
ulation domain and which ranges linearly up to 1 at x ¼ xmax, the boundary value ain mimics a multispeckle
Fig. 6. Zoom near the caustic line of the laser intensity for a multi-speckle beam.



laser beam. We use the paraxial model in the third of the simulation domain and the frequency wave equation
in the complementary part, then we have much less unknowns to deal with for the Helmholtz problem. In this
simulation, the computational domain size was 2000� 2000 wave lengths. There were 200 million cells in the
Helmholtz zone and 4 millions unknowns for the paraxial zone The hydrodynamics equations are solved on a
domain which consists of 16 million cells. The computation was performed using 256 processors. The physical
time of the simulation is equal to 11 ps. The elapsed time for the full simulation was 8 h. On Fig. 5, the map of
the laser intensity is represented at the end of simulation.

Lastly, we show on Fig. 6, a zoom of the laser intensity near the caustic line in a numerical simulation of the
same type than the previous one, except that the absorption coefficient is small but not zero. One can notice
the great accuracy of simulation which shows interference patterns of the speckles.

6. Conclusion and prospects

In the framework of the hydrodynamics parallel platform HERA, we have developed a solver for the laser
propagation based on the Helmholtz equation that can handle realistic computations on very large computa-
tional domains. The Helmholtz zone is coupled with a paraxial zone and a fluid plasma model. The assump-
tion that the initial density N depends mainly on the x-variable only allows us to precondition by a domain
decomposition method (two PMLs and a large Helmholtz zone) where the linear system corresponding to the
Helmholtz zone with a matrix AG may be solved efficiently by the block cyclic reduction method. Most of the
computer time is spent by applying a dense nx � nx matrix Q to a set of ny vectors. We can thus achieve a very
good scalability w.r.t to the number of unknowns in the y-direction.

As the physical time evolves the fluctuation of the density increases. We notice then an increase in the num-
ber of GMRES iterations per time step, but this number remains small enough to have an acceptable CPU
time. In the future some CPU time may be saved by using a domain decomposition in the large central Helm-
holtz zone. For instance, simply dividing the Helmholtz zone in two vertical subdomains would decrease the
size of the matrices Q by a factor 4. Moreover the use of local (and thus more accurate) averages for the den-
sity in the preconditioner could break the increase in the number of iterations as the time increases. Another
interesting strategy could be to not consider inside the inner iteration loop of the Krylov method all the spatial
domain that is to say all the ny vectors but only the vectors which do not belong to some subinterval ½n1

y ; n
2
y � for

instance the ones where the solution varies very few from an iteration to the other.
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